SL Paper 1

Consider the simultaneous linear equations

$$egin{array}{ll} x+z=-1\ 3x+y+2z=1\ 2x+ay-z=b \end{array}$$

where a and b are constants.

a.	Using row reduction, find the solutions in terms of a and b when $a \neq 3$.	[8]
b.	Explain why the equations have no unique solution when $a = 3$.	[1]
c.	Find all the solutions to the equations when $a = 3$, $b = 10$ in the form $r = s + \lambda t$.	[4]

Consider the matrix
$$\boldsymbol{M} = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix}$$
.

a.	Show that the linear transformation represented by $m{M}$ transforms any point on the line $y=x$ to a point on the same line.	[2]
b.	Explain what happens to points on the line $4y+x=0$ when they are transformed by M .	[3]
c.	State the two eigenvalues of <i>M</i> .	[2]
d.	State two eigenvectors of M which correspond to the two eigenvalues.	[2]

A matrix \boldsymbol{M} is called idempotent if $\boldsymbol{M}^2 = \boldsymbol{M}$.

The idempotent matrix \pmb{N} has the form

$$oldsymbol{N}=egin{pmatrix} a & -2a\ a & -2a \end{pmatrix}$$

where a
eq 0.

- a. (i) Explain why **M** is a square matrix.
 - (ii) Find the set of possible values of det(*M*).
- b. (i) Find the value of a.

[4]

- Find the eigenvalues of **N**. (ii)
- Find corresponding eigenvectors. (iii)

Let $\mathbf{A}^2 = 2\mathbf{A} + \mathbf{I}$ where \mathbf{A} is a 2 × 2 matrix.

a. Show that $A^4 = 12A + 5I$.

b. Let
$$\mathbf{B} = \begin{bmatrix} 4 & 2 \\ 1 & -3 \end{bmatrix}$$
.
Given that $\mathbf{B}^2 - \mathbf{B} - 4\mathbf{I} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, find the value of k .

Consider the system of equations

[1	2	1	3	$\overline{x_1}$		[2]
2	1	3	1	x_2		3
5	1	8	0	x_3	=	λ
3	3	4	4	x_4		μ

a.	Determine the value of λ and the value of μ for which the equations are consistent.
b.	For these values of λ and μ , solve the equations.
c.	State the rank of the matrix of coefficients, justifying your answer.

The non-zero vectors $\textbf{\textit{v}}_1, \textbf{\textit{v}}_2, \textbf{\textit{v}}_3$ form an orthogonal set of vectors in $\mathbb{R}^3.$

a.i. By considering $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0$, show that v_1 , v_2 , v_3 are linearly independent.	[3]
a.ii.Explain briefly why v_1 , v_2 , v_3 form a basis for vectors in \mathbb{R}^3 .	[3]
b.i.Show that the vectors	[2]

 $\begin{bmatrix} 1\\0\\1 \end{bmatrix}; \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}; \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$

form an orthogonal basis.

b.iiExpress the vector

[3]

[3]

[5]

[3]

[2]

as a linear combination of these vectors.

In this question, x, y and z denote the coordinates of a point in three-dimensional Euclidean space with respect to fixed rectangular axes with origin O. The vector space of position vectors relative to O is denoted by \mathbb{R}^3 .

- a. Explain why the set of position vectors of points whose coordinates satisfy x y z = 1 does not form a vector subspace of \mathbb{R}^3 . [1]
- b. (i) Show that the set of position vectors of points whose coordinates satisfy x y z = 0 forms a vector subspace, V, of \mathbb{R}^3 . [13]
 - (ii) Determine an orthogonal basis for *V* of which one member is $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.
 - (iii) Augment this basis with an orthogonal vector to form a basis for \mathbb{R}^3 .
 - (iv) Express the position vector of the point with coordinates (4, 0, -2) as a linear combination of these basis vectors.

The matrix A is given by $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$.

- (a) Given that A^3 can be expressed in the form $A^3 = aA^2 = bA + cI$, determine the values of the constants a, b, c.
- (b) (i) Hence express A^{-1} in the form $A^{-1} = dA^2 = eA + fI$ where $d, e, f \in \mathbb{Q}$.
- (ii) Use this result to determine A^{-1} .

A transformation T is a linear mapping from \mathbb{R}^3 to \mathbb{R}^4 , represented by the matrix

$$M=egin{pmatrix} 1&2&1\2&7&5\-3&1&4\1&5&4 \end{pmatrix}$$

- a. (i) Find the row rank of M.
 - (ii) Hence or otherwise find the kernel of T.
- b. (i) State the column rank of M.
 - (ii) Find the basis for the range of this transformation.

[8]

[4]

Let **S** be the set of matrices given by

$$egin{bmatrix} a & b \ c & d \end{bmatrix}; a,b,c,d \in \mathbb{R}, \, ad-bc=1$$

The relation R is defined on S as follows. Given A , $B \in S$, ARB if and only if there exists $X \in S$ such that A = BX .

- a. Show that R is an equivalence relation.
- b. The relationship between a, b, c and d is changed to ad bc = n. State, with a reason, whether or not there are any non-zero values of n, [2] other than 1, for which R is an equivalence relation.

The matrix **M** is defined by $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

The eigenvalues of M are denoted by λ_1 , λ_2 .

- (a) Show that $\lambda_1 + \lambda_2 = a + d$ and $\lambda_1 \lambda_2 = \det(M)$.
- (b) Given that a + b = c + d = 1, show that 1 is an eigenvalue of M.
- (c) Find eigenvectors for the matrix $\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$.

The matrix \boldsymbol{A} is given by

$$oldsymbol{A} = egin{pmatrix} 0 & 1 & 0 \ 2 & 4 & 1 \ 4 & -11 & -2 \end{pmatrix}.$$

- a. (i) Find the matrices A^2 and A^3 , and verify that $A^3 = 2A^2 A$.
 - (ii) Deduce that $A^4 = 3A^2 2A$.
- b. (i) Suggest a similar expression for A^n in terms of A and A^2 , valid for $n \ge 3$.
 - (ii) Use mathematical induction to prove the validity of your suggestion.

Consider the system of equations

$$egin{pmatrix} 1 & -1 & 2 \ 2 & 2 & -1 \ 3 & 5 & -4 \ 3 & 1 & 1 \ \end{pmatrix} egin{pmatrix} x \ y \ z \ \end{pmatrix} = egin{pmatrix} 5 \ 3 \ 1 \ k \ \end{pmatrix}.$$

[6]

[8]

[8]

- a. By reducing the augmented matrix to row echelon form,
 - (i) find the rank of the coefficient matrix;
 - (ii) find the value of k for which the system has a solution.
- b. For this value of k, determine the solution.
- a. Show that the following vectors form a basis for the vector space \mathbb{R}^3 .

$\begin{pmatrix}1\\2\\3\end{pmatrix};\begin{pmatrix}2\\3\\1\end{pmatrix};\begin{pmatrix}5\\2\\5\end{pmatrix}$

b. Express the following vector as a linear combination of the above vectors.

$\begin{pmatrix} 12\\14\\16 \end{pmatrix}$

The set S contains the eight matrices of the form

$egin{pmatrix} a & 0 & 0 \ 0 & b & 0 \ 0 & 0 & c \end{pmatrix}$

where a, b, c can each take one of the values +1 or -1.

a. Show that any matrix of this form is its own inverse.
b. Show that S forms an Abelian group under matrix multiplication.
c. Giving a reason, state whether or not this group is cyclic.

By considering the images of the points (1, 0) and (0, 1),

a.i. determine the 2 × 2 matrix **P** which represents a reflection in the line y = (an heta) x.

a.ii.determine the 2 × 2 matrix **Q** which represents an anticlockwise rotation of θ about the origin.

[3]

[5]

[3]

[5]

[3]

[9]

[1]

[3]

[2]

- b. Describe the transformation represented by the matrix PQ.
- c. A matrix *M* is said to be orthogonal if $M^T M = I$ where *I* is the identity. Show that **Q** is orthogonal.

The transformations T_1 , T_2 , T_3 , T_4 , in the plane are defined as follows:

- T_1 : A rotation of 360° about the origin
- T_2 : An anticlockwise rotation of 270° about the origin
- T_3 : A rotation of 180° about the origin
- T_4 : An anticlockwise rotation of 90° about the origin.

The transformation T_5 is defined as a reflection in the *x*-axis.

The transformation T is defined as the composition of T_3 followed by T_5 followed by T_4 .

a. Copy and complete the following Cayley table for the transformations of *T*₁, *T*₂, *T*₃, *T*₄, under the operation of composition of transformations. [2]

	T_1	T_2	<i>T</i> ₃	T_4
<i>T</i> ₁	T_1	T_2	<i>T</i> ₃	T_4
<i>T</i> ₂	T_2			
<i>T</i> ₃	<i>T</i> ₃			
<i>T</i> ₄	T_4			

b.i. Show that T_1 , T_2 , T_3 , T_4 under the operation of composition of transformations form a group. Associativity may be assumed.	[3]
b.iiShow that this group is cyclic.	[1]
c. Write down the 2 × 2 matrices representing T_3 , T_4 and T_5 .	[3]
d.i. Find the 2 \times 2 matrix representing <i>T</i> .	[2]
d.ii.Give a geometric description of the transformation <i>T</i> .	[1]

[2]